Comparing random forest approaches to segmenting and classifying gestures
نویسندگان
چکیده
A complete gesture recognition system should localize and classify each gesture from a given gesture vocabulary, within a continuous video stream. In this work, we compare two approaches: a method that performs the tasks of temporal segmentation and classification simultaneously with another that performs the tasks sequentially. The first method trains a single random forest model to recognize gestures from a given vocabulary, as presented in a training dataset of video plus 3D body joint locations, as well as out-of-vocabulary (non-gesture) instances. The second method employs a cascaded approach, training a binary random forest model to distinguish gestures from background and a multi-class random forest model to classify segmented gestures. Given a test input video stream, both frameworks are applied using sliding windows at multiple temporal scales. We evaluated our formulation in segmenting and recognizing gestures from two different benchmark datasets: the NATOPS dataset of 9600 gesture instances from a vocabulary of 24 aircraft handling signals, and the ChaLearn dataset of 7754 gesture instances from a vocabulary of 20 Italian communication gestures. The performance of our method compares favorably with state-of-the-art methods that employ Hidden Markov Models or Hidden Conditional Random Fields on the NATOPS dataset. We conclude with a discussion of the advantages of using our model for the task of gesture recognition and segmentation, and outline weaknesses which need to be addressed in the future. © 2016 Elsevier B.V. All rights reserved.
منابع مشابه
Kinect Gesture Recognition for Interactive System
Gaming systems like Kinect and XBox always have to tackle the problem of extracting features from video data sets and classifying the body movement. In this study, reasonable features like human joints positions, joints velocities, joint angles and joint angular velocities are extracted. We used several machine learning methods including Naive Bayes, Support Vector Machine and Random Forest to ...
متن کاملKinect vs. Low-cost Inertial Sensing for Gesture Recognition
In this paper, we investigate efficient recognition of human gestures / movements from multimedia and multimodal data, including the Microsoft Kinect and translational and rotational acceleration and velocity from wearable inertial sensors. We firstly present a system that automatically classifies a large range of activities (17 different gestures) using a random forest decision tree. Our syste...
متن کاملThesis Title
Acknowledgments I gratefully acknowledge the advice and guidance of my co-advisors Prof. Stan Sclaroff and Prof. Margrit Betke, as well as the support of the members of the Image and Video Charles River Analytics for being a good source of practical advice. I also express my gratitude to my parents for their infinite love and support. ABSTRACT This thesis investigates a gesture segmentation and...
متن کاملTree based classification of tabla strokes
The paper attempts to validate the effectiveness of tree classifiers to classify tabla strokes especially the ones which are overlapping in nature. It uses decision tree, ID3 and random forest as classifiers. A custom made data sets of 650 samples of 13 different tabla strokes were used for experimental purpose. 31 different features with their mean and variances were extracted for classificati...
متن کاملEstimation of Phosphorus Reduction from Wastewater by Artificial Neural Network, Random Forest and M5P Model Tree Approaches
This study aims to examine the ability of free floating aquatic plants to remove phosphorus and to predict the reduction of phosphorus from rice mill wastewater using soft computing techniques. A mesocosm study was conducted at the mill premises under normal conditions, and reliable results were obtained. Four aquatic plants, namely water hyacinth, water lettuce, salvinia, and duckweed were use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Image Vision Comput.
دوره 58 شماره
صفحات -
تاریخ انتشار 2017